首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2310篇
  免费   360篇
  国内免费   222篇
化学   544篇
晶体学   38篇
力学   1320篇
综合类   41篇
数学   132篇
物理学   817篇
  2024年   6篇
  2023年   13篇
  2022年   49篇
  2021年   66篇
  2020年   88篇
  2019年   56篇
  2018年   47篇
  2017年   102篇
  2016年   113篇
  2015年   96篇
  2014年   115篇
  2013年   170篇
  2012年   110篇
  2011年   140篇
  2010年   97篇
  2009年   126篇
  2008年   141篇
  2007年   140篇
  2006年   131篇
  2005年   129篇
  2004年   115篇
  2003年   115篇
  2002年   83篇
  2001年   83篇
  2000年   83篇
  1999年   84篇
  1998年   59篇
  1997年   48篇
  1996年   50篇
  1995年   31篇
  1994年   41篇
  1993年   28篇
  1992年   20篇
  1991年   18篇
  1990年   22篇
  1989年   18篇
  1988年   16篇
  1987年   11篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1957年   1篇
排序方式: 共有2892条查询结果,搜索用时 444 毫秒
81.
Perovskite lattice distortion induced by residual tensile strain from the thermal expansion mismatch between the electron-transporting layer (ETL) and perovskite film causes a sluggish charge extraction and transfer dynamics in all-inorganic CsPbBr3 perovskite solar cells (PSCs) because of their higher crystallization temperatures and thermal expansion coefficients. Herein, the interfacial strain is released by fabricating a WS2/CsPbBr3 van der Waals heterostructure owing to their matched crystal lattice structure and the atomically smooth dangling bond-free surface to act as a lubricant between ETL and CsPbBr3 perovskite. Arising from the strain-released interface and condensed perovskite lattice, the best device achieves an efficiency of 10.65 % with an ultrahigh open-circuit voltage of 1.70 V and significantly improved stability under persistent light irradiation and humidity (80 %) attack over 120 days.  相似文献   
82.
This paper is concerned with the experimental testing and the constitutive modelling of a thermoplastic microcellular polyethylene-terephthalate (MC-PET) foam on the temperature range of 21–210 °C in order to investigate the temperature-dependent performance of the applied parallel viscoelastic-viscoplastic material model. By means of carefully designed uniaxial mechanical tests in temperature chamber, the viscous, elastic and yielding behaviours of the investigated material are identified, which are then applied for selecting suitable viscoelastic-viscoplastic constitutive models. The material characterization process is conducted using finite-element-based fitting method, including also the analysis of the applied numerical optimization algorithm. The fitting results are used to analyse the parameter sensitivity and to propose closed-form analytical relations for the temperature dependency of the material parameters. Finally, the utilisation of the analytical temperature functions for speeding up the parameter-fitting process is also demonstrated.  相似文献   
83.
Since 1996, a growing number of strained macrocycles, comprising only sp2‐ or sp‐hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes ( CPPAs ) and the [n]cycloparaphenylenes ( CPPs ) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near‐perfect circular shape, the unusually high degree of shape‐persistence, and the presence of both convex and concave π‐faces. In this Minireview, we give an overview on the use of strained carbon‐rich nanohoops in host–guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.  相似文献   
84.
A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn?N bonds in the equatorial plane and one Zn‐OH2 bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.  相似文献   
85.
Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface. By employing operando techniques, we show that in the emergent nanostructure, the endogenous nanoparticles and the perovskite lattice become reciprocally strained and seamlessly connected, enabling enhanced oxygen exchange. Additionally, even deeply embedded nanoparticles can reversibly exchange oxygen with a methane stream, driving its redox conversion to syngas with remarkable selectivity and long term cyclability while surface particles are present. These results not only exemplify the means to create extensive, self‐strained nanoarchitectures with enhanced oxygen transport and storage capabilities, but also demonstrate that deeply submerged, redox‐active nanoparticles could be entirely accessible to reaction environments, driving redox transformations and thus offering intriguing new alternatives to design materials underpinning several energy conversion technologies.  相似文献   
86.
Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically‐applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.  相似文献   
87.
分布阻尼振子可拓宽结构减振频带,因此可将振子分布于板中以形成复合板(简称“分布振子复合板”),进而实现较宽的减振频带.对于多点支撑处受到宽频非一致激励(例如在不同激励点处的激励频率、幅值与相位有差异)的分布振子复合板,目前还缺乏有效简便的优化控制指标.在作者之前的研究中,针对含分布振子的梁推导了基于模态应变能的模态阻尼计算理论,讨论了模态阻尼与单点激励下梁的减振效果的相关性,并应用于宽频减振设计优化.本文进一步将模态阻尼计算理论推广到分布振子复合板,并将研究从梁的单点激励扩展到板的多点非一致激励下的阻尼减振相关性.首先,在利用模态应变能法推导得到分布振子复合板的模态阻尼计算公式后,从理论上讨论了不同边界条件与模态阶次对计算结果的影响,以及计算理论的适用性.而后,进一步通过有限元参数分析了边界条件、频率比、模态阶次与质量比的影响.最后,通过算例分析了无振子板或分布振子复合板在四个激励点具有多种幅值与相位组合情况下的稳态响应.结果表明,推导的模态阻尼计算公式可正确预测不同边界条件下的模态阻尼,且理论预测的模态阻尼与基板的稳态平均加速度减小率、稳态峰值应变能减小率均有较高的相关性.  相似文献   
88.
A one-dimensional stress-based elasticity model with limited strain extensibility is developed in this paper, based on thermodynamics arguments. Such nonlinear elastic models can be used to model certain rubber-like and biological materials with limiting chain extensibility. The derived constitutive function is a non-smooth piecewise expression, which can be regularized for numerical or physical considerations. This non-smooth constitutive expression is derived from a Gibbs potential. A three-dimensional extension of this stress-based model is also proposed in the paper. Some simple structural examples are investigated for a bar composed of this non-smooth elastic body. A homogeneous bar composed of this new class of nonlinear elastic material that is loaded is studied for different tension states, namely for concentrated or distributed axial loading. It is shown that the displacement limit extensibility can be observed at the structural scale, with finite or infinite axial load parameters.  相似文献   
89.
In elastomer/organo clay nanocomposites, the morphological characteristics, and hence the mechanical properties, of the vulcanizates are strongly influenced by the organic modifier and the vulcanization process. When the elastomer itself undergoes strain‐induced crystallization, both the organic modifier and the dispersed filler particles could significantly influence the crystallization process. These phenomena are very common in case of natural rubber‐based vulcanizates. In this study, the similar effects have been demonstrated with carboxylated nitrile rubber (XNBR) and organically modified layered double hydroxide (O‐LDH)‐based nanocomposites. The effect of size of the organic modifier was obviously visible on the interlayer distance of O‐LDH and also on the morphological reorganization of the dispersed O‐LDH particles during vulcanization process. The strain‐induced crystallization of the XNBR was found to be strongly dependent on the morphological change that occurs during vulcanization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
90.
In our previous paper, structural changes of selenium powders ground by a planetary ball mill at various rotational speeds were investigated for the nanostructural modification of particles using mechanical grinding process. The experimental results indicated that the amorphisation of Se by grinding accompanies lattice strain, and the lattice strain arises from impact energy which is more than an energy related to intermolecular interaction. In this paper, molecular dynamics simulations of selenium have been carried out under compressing conditions of various pressure strengths for obtaining information of the lattice strain at atomic level. Then, dynamical behaviour of atomic configuration has been discussed in this process. The structural disordering and formation of the structural defects were estimated by deviations of bond length and angle and the number of created defects before and after compressing from simulated results. The disordering took place during compressing at various pressure strengths, and the disordered atoms return to their initial positions at lower pressure. Stable disordered state and defects after the compression can however remain by compression at more than a certain pressure strength mainly associated with binding energy of selenium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号